Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
Acta Pharm Sin B ; 14(2): 781-794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322342

RESUMO

Small interfering RNA (siRNA) has a promising future in the treatment of ocular diseases due to its high efficiency, specificity, and low toxicity in inhibiting the expression of target genes and proteins. However, due to the unique anatomical structure of the eye and various barriers, delivering nucleic acids to the retina remains a significant challenge. In this study, we rationally design PACD, an A-B-C type non-viral vector copolymer composed of a hydrophilic PEG block (A), a siRNA binding block (B) and a pH-responsive block (C). PACDs can self-assemble into nanosized polymeric micelles that compact siRNAs into polyplexes through simple mixing. By evaluating its pH-responsive activity, gene silencing efficiency in retinal cells, intraocular distribution, and anti-angiogenesis therapy in a mouse model of hypoxia-induced angiogenesis, we demonstrate the efficiency and safety of PACD in delivering siRNA in the retina. We are surprised to discover that, the PACD/siRNA polyplexes exhibit remarkable intracellular endosomal escape efficiency, excellent gene silencing, and inhibit retinal angiogenesis. Our study provides design guidance for developing efficient nonviral ocular nucleic acid delivery systems.

2.
Adv Mater ; : e2312897, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346008

RESUMO

Ischemic stroke is a dreadful vascular disorder that poses enormous threats to the public health. Due to its complicated pathophysiological features, current treatment options after ischemic stroke attack remains unsatisfactory. Insufficient drug delivery to ischemic lesions impeded by the blood-brain barrier (BBB) largely limits the therapeutic efficacy of most anti-stroke agents. Herein, inspired by the rapid BBB penetrability of 4T1 tumor cells upon their brain metastasis and natural roles of platelet in targeting injured vasculatures, a bio-derived nanojacket is developed by fusing 4T1 tumor cell membrane with platelet membrane, which further clothes on the surface of paeonol and polymetformin-loaded liposome to obtain biomimetic nanoplatforms (PP@PCL) for ischemic stroke treatment. The designed PP@PCL could remarkably alleviate ischemia-reperfusion injury by efficiently targeting ischemic lesion, preventing neuroinflammation, scavenging excess reactive oxygen species (ROS), reprogramming microglia phenotypes, and promoting angiogenesis due to the synergistic therapeutic mechanisms that anchor the pathophysiological characteristics of ischemic stroke. As a result, PP@PCL exerts desirable therapeutic efficacy in injured PC12 neuronal cells and rat model of ischemic stroke, which significantly attenuates neuronal apoptosis, reduces infarct volume, and recovers neurological functions, bringing new insights into exploiting promising treatment strategies for cerebral ischemic stroke management.

3.
Adv Mater ; 36(4): e2305300, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37547955

RESUMO

Lipid nanoparticles (LNPs) are currently the most promising clinical nucleic acids drug delivery vehicles. LNPs prevent the degradation of cargo nucleic acids during blood circulation. Upon entry into the cell, specific components of the lipid nanoparticles can promote the endosomal escape of nucleic acids. These are the basic properties of lipid nanoparticles as nucleic acid carriers. As LNPs exhibit hepatic aggregation characteristics, enhancing targeting out of the liver is a crucial way to improve LNPs administrated in vivo. Meanwhile, endosomal escape of nucleic acids loaded in LNPs is often considered inadequate, and therefore, much effort is devoted to enhancing the intracellular release efficiency of nucleic acids. Here, different strategies to efficiently deliver nucleic acid delivery from LNPs are concluded and their mechanisms are investigated. In addition, based on the information on LNPs that are in clinical trials or have completed clinical trials, the issues that are necessary to be approached in the clinical translation of LNPs are discussed, which it is hoped will shed light on the development of LNP nucleic acid drugs.


Assuntos
Nanopartículas , Ácidos Nucleicos , Lipídeos , Lipossomos , RNA Interferente Pequeno
4.
Adv Sci (Weinh) ; 11(5): e2306140, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044276

RESUMO

Traditional Chinese medicine (TCM) is widely used in clinical practice, including skin and gastrointestinal diseases. Here, a potential TCM QY305 (T-QY305) is reported that can modulate the recruitment of neutrophil in skin and colon tissue thus reducing cutaneous adverse reaction and diarrhea induced by epidermal growth factor receptor inhibitors (EGFRIs). On another hand, the T-QY305 formula, through regulating neutrophil recruitment features would highlight the presence of N-QY305, a subunit nanostructure contained in T-QY305, and confirm its role as potentially being the biomaterial conferring to T-QY305 its pharmacodynamic features. Here, the clinical records of two patients are analyzed expressing cutaneous adverse reaction and demonstrate positive effect of T-QY305 on the simultaneous inhibition of both cutaneous adverse reaction and diarrhea in animal models. The satisfying results obtained from T-QY305, lead to further process to the isolation of N-QY305 from T-QY305, in order to demonstrate that the potency of T-QY305 originates from the nanostructure N-QY305. Compared to T-QY305, N-QY305 exhibits higher potency upon reducing adverse reactions. The data represent a promising candidate for reducing cutaneous adverse reaction and diarrhea, meanwhile proposing a new strategy to highlight the presence of nanostructures being the "King" of Chinese medicine formula as the pharmacodynamic basis.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Animais , Humanos , Medicina Tradicional Chinesa/efeitos adversos , Medicina Tradicional Chinesa/métodos , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/química , Diarreia/induzido quimicamente , Diarreia/prevenção & controle
5.
Small ; 20(8): e2306656, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817351

RESUMO

Herein, carbon dot (CD)-supported Fe single-atom nanozymes with high content of pyrrolic N and ultrasmall size (ph-CDs-Fe SAzyme) are fabricated by a phenanthroline-mediated ligand-assisted strategy. Compared with phenanthroline-free nanozymes (CDs-Fe SAzyme), ph-CDs-Fe SAzyme exhibit higher peroxidase (POD)-like activity due to their structure similar to that of ferriporphyrin in natural POD. Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) analyses show that metal Fe is dispersed in ph-CDs-Fe SAzyme as single atoms. Steady-state kinetic studies show that the maximum velocity (Vmax ) and turnover number (kcat ) of H2 O2  homolytic cleavage catalyzed by ph-CDs-Fe SAzyme are 3.0 and 6.2 more than those of the reaction catalyzed by CDs-Fe SAzyme. Density functional theory (DFT) calculations show that the energy barrier of the reaction catalyzed by ph-CDs-Fe SAzyme is lower than that catalyzed by CDs-Fe SAzyme. Antitumor efficacy experiments show that ph-CDs-Fe SAzyme can efficiently inhibit the growth of tumor cells both in vitro and in vivo by synergistic chemodynamic and photothermal effects. Here a new paradigm is provided for the development of efficient antitumor therapeutic approaches based on SAzyme with POD-like activity.


Assuntos
Carbono , Hemina , Cinética , Pirróis , Espectroscopia por Absorção de Raios X
6.
ACS Nano ; 17(24): 24773-24789, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38055864

RESUMO

As the prevalence of vascular calcification (VC), a strong contributor to cardiovascular morbidity and mortality, continues to increase, the need for pharmacologic therapies becomes urgent. Sodium thiosulfate (STS) is a clinically approved drug for therapy against VC; however, its efficacy is hampered by poor bioavailability and severe adverse effects. Plant-derived extracellular vesicles have provided options for VC treatment since they can be used as biomimetic drug carriers with higher biosafety and targeting abilities than artificial carriers. Inspired by natural grapefruit-derived extracellular vesicles (EVs), we fabricated a biomimetic nanocarrier comprising EVs loaded with STS and further modified with hydroxyapatite crystal binding peptide (ESTP) for VC-targeted delivery of STS. In vitro, the ESTP nanodrug exhibited excellent cellular uptake capacity by calcified vascular smooth muscle cells (VSMCs) and subsequently inhibited VSMCs calcification. In the VC mice model, the ESTP nanodrug showed preferentially the highest accumulation in the calcified arteries compared to other treatment groups. Mechanistically, the ESTP nanodrug significantly prevented VC via driving M2 macrophage polarization, reducing inflammation, and suppressing bone-vascular axis as demonstrated by inhibiting osteogenic phenotype trans-differentiation of VSMCs while enhancing bone quality. In addition, the ESTP nanodrug did not induce hemolysis or cause any damage to other organs. These results suggest that the ESTP nanodrug can prove to be a promising agent against VC without the concern of systemic toxicity.


Assuntos
Citrus paradisi , Vesículas Extracelulares , Calcificação Vascular , Animais , Camundongos , Biomimética , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/metabolismo , Calcificação Vascular/prevenção & controle , Vesículas Extracelulares/metabolismo
7.
J Control Release ; 364: 508-528, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37939852

RESUMO

Exosomes are nanoscale vesicles with a size of 30-150 nm secreted by living cells. They are vital players in cellular communication as they can transport proteins, nucleic acids, lipids, and etc. Immune cell-derived exosomes (imEXOs) have great potential for tumor therapy because they have many of the same functions as their parent cells. Especially, imEXOs display unique constitutive characteristics that are directly involved in tumor therapy. Herein, we begin by the biogenesis, preparation, characterization and cargo loading strategies of imEXOs. Next, we focus on therapeutic potentials of imEXOs from different kinds of immune cells against cancer from preclinical and clinical studies. Finally, we discuss advantages of engineered imEXOs and potential risks of imEXOs in cancer treatment. The advantages of engineered imEXOs are highlighted, including selective killing effect, effective tumor targeting, effective lymph node targeting, immune activation and regulation, and good biosafety.


Assuntos
Exossomos , Neoplasias , Humanos , Exossomos/metabolismo , Neoplasias/tratamento farmacológico , Comunicação Celular
8.
ACS Nano ; 17(20): 20024-20033, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37831502

RESUMO

Hierarchical multiscale wrinkling nanostructures have shown great promise for many biomedical applications, such as cancer diagnosis and therapy. However, synthesizing these materials with precise control remains challenging. Here, we report a sulfur doping strategy to synthesize sub-1 nm NiFe hydroxide ultrathin nanosheets (S-NiFe HUNs). The introduction of sulfur affects the reduction of the band gap and the adjustment of the electronic structure, thereby improving the light absorption ability of the S-NiFe HUNs. Additionally, S-NiFe HUNs show a multilayered nanobowl-like structure that enables multiple reflections of incident light inside the nanostructure, which improved the utilization of incident light and achieved high photothermal conversion. As a result, the as-prepared product with hydrophilic modification (dS-NiFe HUNs) demonstrated enhanced tumor-killing ability in vitro. In a mouse model of breast cancer, dS-NiFe HUNs combined with near-infrared light irradiation greatly inhibited tumor growth and prolonged the mice survival. Altogether, our study demonstrates the great potential of dS-NiFe HUNs for cancer photothermal therapy applications.


Assuntos
Nanoestruturas , Neoplasias , Animais , Camundongos , Terapia Fototérmica , Neoplasias/terapia , Fototerapia , Nanoestruturas/química , Enxofre
9.
Adv Drug Deliv Rev ; 202: 115111, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820982

RESUMO

The lack of effective treatments for pulmonary diseases presents a significant global health burden, primarily due to the challenges posed by the pulmonary barrier that hinders drug delivery to the lungs. Inhaled nanomedicines, with their capacity for localized and precise drug delivery to specific pulmonary pathologies through the respiratory route, hold tremendous promise as a solution to these challenges. Nevertheless, the realization of efficient and safe pulmonary drug delivery remains fraught with multifaceted challenges. This review summarizes the delivery barriers associated with major pulmonary diseases, the physicochemical properties and drug formulations affecting these barriers, and emphasizes the design advantages and functional integration of nanomedicine in overcoming pulmonary barriers for efficient and safe local drug delivery. The review also deliberates on established nanocarriers and explores drug formulation strategies rooted in these nanocarriers, thereby furnishing essential guidance for the rational design and implementation of pulmonary nanotherapeutics. Finally, this review cast a forward-looking perspective, contemplating the clinical prospects and challenges inherent in the application of inhaled nanomedicines for respiratory diseases.


Assuntos
Pneumopatias , Nanopartículas , Humanos , Pulmão , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nanomedicina , Pneumopatias/tratamento farmacológico
10.
Acta Pharm Sin B ; 13(9): 3945-3955, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719367

RESUMO

Immunotherapy has revolutionized the landscape of cancer treatment. However, single immunotherapy only works well in a small subset of patients. Combined immunotherapy with antitumor synergism holds considerable potential to boost the therapeutic outcome. Nevertheless, the synergistic, additive or antagonistic antitumor effects of combined immunotherapies have been rarely explored. Herein, we established a novel combined cancer treatment modality by synergizing p21-activated kinase 4 (PAK4) silencing with immunogenic phototherapy in engineered extracellular vesicles (EVs) that were fabricated by coating M1 macrophage-derived EVs on the surface of the nano-complex cores assembled with siRNA against PAK4 and a photoactivatable polyethyleneimine. The engineered EVs induced potent PAK4 silencing and robust immunogenic phototherapy, thus contributing to effective antitumor effects in vitro and in vivo. Moreover, the antitumor synergism of the combined treatment was quantitatively determined by the CompuSyn method. The combination index (CI) and isobologram results confirmed that there was an antitumor synergism for the combined treatment. Furthermore, the dose reduction index (DRI) showed favorable dose reduction, revealing lower toxicity and higher biocompatibility of the engineered EVs. Collectively, the study presents a synergistically potentiated cancer treatment modality by combining PAK4 silencing with immunogenic phototherapy in engineered EVs, which is promising for boosting the therapeutic outcome of cancer immunotherapy.

11.
Adv Healthc Mater ; 12(30): e2301691, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37677811

RESUMO

Oxidative stress is one leading inner cause of acute kidney injury (AKI) induced by cisplatin (DDP). Therefore, inhibiting oxidative stress is an important strategy to prevent the occurrence of DDP-induced AKI. Herein, a pH-selective "oxidative cycle accelerator" based on black phosphorus/ceria catalytic tunable nanozymes (BP@CeO2 -PEG) to effectively and persistently scavenge ROS for alleviating DDP-induced AKI is demonstrated. The BP@CeO2 -PEG nanozymes show pH-dependent multi-enzymatic activities, which are beneficial for selectively scavenging the excess ROS in renal tissues. In the neutral environment of kidneys, BP@CeO2 -PEG nanozymes can accelerate its catalytic "oxidative cycle" by increasing the ratio of Ce3+ /Ce4+ and improving the regeneration of ATP, effectively removing DDP-induced ROS. In addition, BP@CeO2 -PEG nanozymes can suppress the oxidative stress-triggered renal tubular epithelial cell apoptosis by inhibiting the PI3K/Akt signaling pathway. However, in the acidic environment of cancers, the presence of H+ inhibits the conversion of Ce4+ to Ce3+ , which in turn disrupts the oxidative cycle, resulting in the loss of ROS scavenging ability and ensuring the antitumor effect of DDP. Conclusively, the nanozymes offer an excellent antioxidant for alleviating cisplatin-induced AKI and extensive use in other ROS-based injuries.


Assuntos
Injúria Renal Aguda , Cisplatino , Humanos , Cisplatino/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Rim/metabolismo , Estresse Oxidativo
12.
Nat Biomed Eng ; 7(9): 1129-1141, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37696984

RESUMO

The infusion of chimaeric antigen receptor (CAR) T cells can trigger the release of life-threatening supraphysiological levels of pro-inflammatory cytokines. However, uncertainty regarding the timing and severity of such cytokine release syndrome (CRS) demands careful monitoring of the conditions required for the administration of neutralizing antibodies. Here we show that a temperature-sensitive hydrogel conjugated with antibodies for the pro-inflammatory cytokine interleukin-6 (IL-6) and subcutaneously injected before the infusion of CAR-T cells substantially reduces the levels of IL-6 during CRS while maintaining the therapy's antitumour efficacy. In immunodeficient mice and in mice with transplanted human haematopoietic stem cells, the subcutaneous IL-6-adsorbing hydrogel largely suppressed CAR-T-cell-induced CRS, substantially improving the animals' survival and alleviating their levels of fever, hypotension and weight loss relative to the administration of free IL-6 antibodies. The implanted hydrogel, which can be easily removed with a syringe following a cooling-induced gel-sol transition, may allow for a shift in the management of CRS, from monitoring to prevention.


Assuntos
Interleucina-6 , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Hidrogéis , Síndrome da Liberação de Citocina , Citocinas , Anticorpos Neutralizantes , Terapia Baseada em Transplante de Células e Tecidos
13.
Adv Healthc Mater ; 12(29): e2301688, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37540835

RESUMO

Antimicrobial peptides (AMPs) are a developing class of natural and synthetic oligopeptides with host defense mechanisms against a broad spectrum of microorganisms. With in-depth research on the structural conformations of AMPs, synthesis or modification of peptides has shown great potential in effectively obtaining new therapeutic agents with improved physicochemical and biological properties. Notably, AMPs with self-assembled properties have gradually become a hot research topic for various biomedical applications. Compared to monomeric peptides, these peptides can exist in diverse forms (e.g., nanoparticles, nanorods, and nanofibers) and possess several advantages, such as high stability, good biocompatibility, and potent biological functions, after forming aggregates under specific conditions. In particular, the stability and antibacterial property of these AMPs can be modulated by rationally regulating the peptide sequences to promote self-assembly, leading to the reconstruction of molecular structure and spatial orientation while introducing some peptide fragments into the scaffolds. In this work, four self-assembled AMPs are developed, and the relationship between their chemical structures and antibacterial activity is explored extensively through different experiments. Importantly, the evaluation of antibacterial performance in both in vitro and in vivo studies has provided a general guide for using self-assembled AMPs in subsequent treatments for combating bacterial infections.


Assuntos
Peptídeos Antimicrobianos , Nanofibras , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Oligopeptídeos
14.
Signal Transduct Target Ther ; 8(1): 285, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37528082

RESUMO

Enveloped RNA viruses are a group of viruses with an outer membrane derived from a host cell and a genome consisting of ribonucleic acid (RNA). These viruses rely on host cell machinery and organelles to replicate and assemble new virus particles. However, the interaction between viruses and host organelles may be disrupted by nanomaterials, such as gold nanoparticles (AuNPs) with unique physical and chemical properties. In this study, we investigated the effects of AuNPs with different surface charge properties on the subcellular structure and function of mammalian cells, and their effects on two representative enveloped RNA viruses: lentivirus and human coronavirus OC43 (HCoV- OC43) antiviral potential. By comparing the subcellular effects of AuNPs with different surface charge properties, we found that treatment with AuNPs with positive surface charges induced more significant disruption of subcellular structures than neutrally charged AuNPs and negatively charged AuNPs, mainly manifested in lysosomes and Cytoskeletal disorders. The antiviral effect of the surface positively charged AuNPs was further evaluated using lentivirus and HCoV-OC43. The results showed that AuNPs had a significant inhibitory effect on both lentivirus and HCoV-OC43 without obvious side effects. In conclusion, our study provides insights into the mechanism of action and biocompatibility of AuNP in biological systems, while supporting the potential of targeting organelle dynamics against enveloped RNA viruses.


Assuntos
Nanopartículas Metálicas , Vírus de RNA , Animais , Humanos , Ouro/farmacologia , Ouro/química , Ouro/metabolismo , Nanopartículas Metálicas/química , Organelas/metabolismo , Vírus de RNA/genética , Mamíferos
15.
ACS Nano ; 17(15): 14347-14405, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486125

RESUMO

Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.


Assuntos
Corantes Fluorescentes , Substâncias Luminescentes , Corantes Fluorescentes/química , Luminescência , Diagnóstico por Imagem , Atenção à Saúde
16.
Adv Mater ; 35(45): e2305164, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37474204

RESUMO

Gene mutations and functional inhibition are the major obstacles for p53-mediated oncotherapy. For p53-wild-type tumors, the underlying mechanisms of functional inhibition of p53 during oncogenesis are unknown. The results reveal that the expression of the MDM2 inhibitor ARF is inhibited in p53-wild-type tumors, indicating that the restoration of ARF could be a potential oncotherapy strategy for p53-wild-type tumors. Therefore, ARF-mimetic MDM2-targeting reassembly peptide nanoparticles (MtrapNPs) for p53-based tumor therapy is developed. The results elucidated that the MtrapNPs respond to and form a nanofiber structure with MDM2. By trapping MDM2, the MtrapNPs stabilize and activate p53 for the inhibition of p53-wild-type tumors. In most cases, reactivated mutant p53 is inhibited and degraded by MDM2. In the present study, MtrapNPs are used to load and deliver arsenic trioxide, a p53 mutation rescuer, for p53-mutated tumor treatment in both orthotopic and metastatic models, and they exhibit significant therapeutic effects. Therefore, the study provides evidence supporting a link between decreased ARF expression and tumor development in patients with p53-wild-type tumors. Thus, the MDM2-trap strategy, which addresses both the inhibition and mutations of p53, is an efficient strategy for the treatment of p53-mutated tumors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p14ARF/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Neoplasias/tratamento farmacológico
17.
Nanoscale Horiz ; 8(8): 976-990, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37278697

RESUMO

With its long clinical history, traditional Chinese medicine (TCM) has gained acceptance for its specific efficacy and safety in the treatment of multiple diseases. Nano-sized materials study of Chinese herbal medicines (CHMs) leads to an increased understanding of assessing TCM therapies, which may be a promising way to illustrate the material basis of CHMs through their processing and extraction. In this review, we provide an overview of the nanostructures of natural and engineered CHMs, including extracted CHMs, polymer nanoparticles, liposomes, micelles, and nanofibers. Subsequently, the applications of these CHM-derived nanostructures to particular diseases are summarized and discussed. Additionally, we discuss the advantages of these nanostructures for studying the therapeutic efficacy of CHMs. Finally, the key challenges and opportunities for the development of these nanostructures are outlined.


Assuntos
Medicamentos de Ervas Chinesas , Nanoestruturas , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Nanoestruturas/uso terapêutico
18.
J Control Release ; 359: 175-187, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37271184

RESUMO

Although polymer-drug conjugates (PDCs) show great promise as versatile drug delivery systems, no antitumor PDCs based on small-molecule drugs are currently on the market, partly because of the lack of validated design principles for PDCs. High drug content is thought to be essential for devising highly efficacious PDCs based on poorly soluble antitumor drugs, but this has not been well validated. Therefore, revisiting the relationship between drug content and PDC performance is vital. In this study, we synthesized four dextran-paclitaxel (PTX) conjugates (designated as DKPs) with different drug contents by linking dextran and PTX via an acid-responsive ketal, and we used the conjugates to construct self-assembled DKP nanoparticles (NPs) for antitumor therapy. We focused on how PTX content influenced the hydrolysis kinetics, cytotoxicity, cellular uptake and intracellular hydrolysis, pharmacokinetics, biodistribution, and antitumor efficacies of the DKP NPs. We found that DKP NPs with lower PTX content showed accelerated drug release and increased tumor accumulation, and consequently enhanced antitumor efficacy. In 4T1-Luc and Panc02-Luc cancer models, the NPs showed considerably improved therapeutic efficacy than the micellar formulation of PTX that is currently in clinical use. Our results indicate that DKP NPs with lower PTX content possess greater antitumor potential, and our findings offer new insights for the connection of drug content-formulation-bioactivity relationship in the rational design of PDC prodrugs.


Assuntos
Nanopartículas , Pró-Fármacos , Paclitaxel/uso terapêutico , Dextranos , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Polímeros , Éteres , Linhagem Celular Tumoral
19.
Adv Mater ; 35(35): e2303835, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37384818

RESUMO

Immunomodulation of tumor-associated macrophages (TAMs) into tumor-inhibiting M1-like phenotype is a promising but challenging strategy. Cleverly, tumor cells overexpress CD47, a "don't eat me" signal that ligates with the signal regulatory protein alpha (SIRPα) on macrophages to escape phagocytosis. Thus, effective re-education of TAMs into the "eat me" type and blocking the CD47-SIRPα signaling play pivotal roles in tumor immunotherapy. Herein, it is reported that hybrid nanovesicles (hEL-RS17) derived from extracellular vesicles of M1 macrophages and decorated with RS17 peptide, an antitumor peptide that specifically binds to CD47 on tumor cells and blocks CD47-SIRPα signaling, can actively target tumor cells and remodel TAM phenotypes. Consequently, more M1-like TAMs infiltrate into tumor tissue to phagocytize more tumor cells due to CD47 blockade. By further co-encapsulating chemotherapeutic agent shikonin, photosensitizer IR820, and immunomodulator polymetformin in hEL-RS17, an enhanced antitumor effect is obtained due to the combinational treatment modality and close synergy among each component. Upon laser irradiation, the designed SPI@hEL-RS17 nanoparticles exert potent antitumor efficacy against both 4T1 breast tumor and B16F10 melanoma models, which not only suppresses primary tumor growth but also inhibits lung metastasis and prevents tumor recurrence, exhibiting great potential in boosting CD47 blockade-based antitumor immunotherapy.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Antígeno CD47 , Recidiva Local de Neoplasia , Fagocitose , Neoplasias/tratamento farmacológico , Imunoterapia , Vesículas Extracelulares/metabolismo
20.
Nanoscale ; 15(27): 11346-11365, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37376885

RESUMO

RNA-cleaving DNAzymes, which are single-stranded catalytic DNA, have attracted considerable attention in bioanalysis and biomedical applications because of their high stability, high catalytic activity, easy synthesis, easy functionalization, and modification. By incorporating these DNAzymes with amplification systems, the sensing platforms can be used to detect a series of targets with high sensitivity and selectivity. In addition, these DNAyzmes possess therapeutic potential by cutting the mRNA in cells and viruses to regulate the expression of the corresponding proteins. This review systematically summarizes the applications of RNA-cleaving DNAzymes in recent years, explaining the uniqueness and superiority of RNA-cleaving DNAzymes in biosensing and gene therapy. Finally, this review extends the discussion to the challenges and perspectives of applying RNA-cleaving DNAzyme as a diagnostic and therapeutic agent. This review provides the researchers with valuable suggestions and promotes the development of DNAzymes for accurate analysis, early diagnosis, and effective therapy in medicine and their broader applications beyond biomedicine.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , DNA Catalítico/metabolismo , RNA/metabolismo , RNA Mensageiro , DNA de Cadeia Simples , Terapia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA